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Abstract

The aim of this paper is threefold. Firstly, we deal with approximation numbers of compact
embeddings

B, (R") & Ly(p), >0, 1<p<oo,
where p is an (isotropic) Radon measure in R". Secondly, we apply the outcome to study the
distribution of the eigenvalues of fractal elliptic operators

By = (id — A)opu, s>0.
Thirdly, we wish to demonstrate that the theory of subatomic wavelet frames in function
spaces according to (Studia Math. 154 (2003) 59) is an efficient tool to handle problems of this

and related type.
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1. Introduction

Let u be a positive Radon measure in R” with
I =suppu compact, O<p(R")<oo, |I'|=0, (L.1)
where |I'| is the Lebesgue measure of I'. Let

s n\y __ ps n n
B,(R") = B,,(R"), l<p<ow, 0<s<1—),

be special classical Besov spaces. The aim of this paper is threefold.
First, we ask for existence and properties of the trace operator r,,

tr s By(R") > Ly(T', ). (1.2)

If u is isotropic then one gets definitive answers. Recall that the above Radon
measure pu is called isotropic if there is a function /4, defined, non-negative,
continuous, and strictly increasing on the interval [0, 1] with A(0) =0, A(1) =1,
such that

w(B(y,r))~h(r), yel, 0<r<l,

where B(y,r) is a ball in R” centred at y and of radius r. As for the meaning of ~ we
refer to (2.1). It comes out (Theorem 1) that fr, according to (1.2) exists (as a
continuous map) if, and only if, it is compact, if, and only if,

(o - 1 1
S o h Y <, o =1 (1.3)
JeNo PP
The above isotropic measure u with the generating function % is called strongly
isotropic if there is a natural number k such that
h(277*F)<ih(27) for all jeN,.
Let H be the inverse function of A. If p is strongly isotropic and if (1.3) is
strengthened by
Z 2_./F/(5_§)h(27j)171—1 ~2_JP/(5_;_;)h(27])I)/—1, Je NO (14)
7
(where the equivalence constants are independent of J) then one obtains for the
approximation numbers a; of the compact operator tr, according to (1.2)
1 _n
ax~k PH(k™)'r, keN

(Theorem 2).
It is the second aim of this paper to apply the above result to fractal elliptic
operators of type

By = (—A+id) o : H'(R") < HY(R"), (L.5)
where —A is the usual Laplacian in R" and

H'(R") = B(R"), 0<s<g
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are the well-known Sobolev spaces. Let u with (1.1) be strongly isotropic with respect
to the generating function / and let (1.4) be specified by p = p’ = 2, hence
D A2Ip(2) ~ 2 227, TeN,.

j=J

Then By is a compact, non-negative, self-adjoint operator in H*(R"). Let g, be its
positive eigenvalues ordered by decreasing magnitude. Then

o~k H(KH)? ™ keN (1.6)

(Theorem 3). Of peculiar interest is the limiting case s =3. Then one has for all
strongly isotropic measures u with (1.1) and the related operators B% according to

(1.5) with s = 5 the Weylian behaviour
Ok~ k71 ’ keN )

of the corresponding positive eigenvalues.
These roughly outlined main results of this paper contribute to several branches of
recent research and, in particular, to their interrelations:

® The study of compact (embedding) operators acting between function spaces of type
B, and F,, including diverse modifications and generalisations. The degree of

compactness is preferably expressed in terms of entropy numbers and
approximation numbers. In [10] one finds a description of the situation in
the middle of the 1990s including many references. As for the recent state of
art concerning approximation numbers in the indicated spaces we refer to
[5,6,9,15-17].

® The study of measures. As for the geometrical aspects we refer to [12,21,13]. The
more recent analysis on fractal sets and measures may be found in [18]. In [33] we
discussed the close connection between Radon measures, multifractal quantities
and function spaces of the above type.

® The study of the distribution of eigenvalues of elliptic differential operators. This is
one of the major theories in analysis since the beginning of the last century which
started with Weyl [35,36]. The recent state of art of the spectral theory of regular
and singular elliptic differential operators and pseudodifferential operators and of
the respective techniques may be found in [25]. The step from regular and singular
to fractal is characterised by the key word fractal drum. There are several aspects
which we discussed in [29, Section 26]. Maybe the best known interpretation is a
drum in the plane with fractal boundary resulting in the study of the (Dirichlet
or Neumann) Laplacian in bounded domains in the plane with fractal boundary
and related subjects according to [19,20]. On the other hand we dealt in [29,
Chapter V], and [30, Chapter III], with fractal drums, more precisely drums with
fractal membranes, resulting in operators of type (1.5) with s =1 and n = 2, and
their analysis, in particular the distribution of eigenvalues.

The present paper might be considered as a contribution to the emerging close
relationship between the indicated topics. In [31] we surveyed this subject in a larger
context, announcing there some results proved in the present paper in detail. A first
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step beyond [29,30] has been done in [34] and some results obtained there are now
improved in a definitive way. But there is a significant difference between the
respective parts in [29,30,34] on the one hand, and the present paper on the other
hand. We always relied on quarkonial (or subatomic) decompositions in function
spaces as developed in [29,30]. In [29,30,34] we used this technique to deal with
entropy numbers of compact embeddings between function spaces, which results in
estimates (from above) of the positive eigenvalues of operators of type B, in (1.5).
Now we rely on (closely related) wavelet frames in function spaces according to [32]
(which in turn are based on [30]). This gives the possibility to replace entropy
numbers of compact embeddings between function spaces by respective approxima-
tion numbers.

In other word, it is the third aim of this paper to present a new method to estimate
approximation numbers of compact operators acting between function spaces based
on wavelet frames. Although our approach to quarkonial decompositions in
function spaces and related wavelet frames is different in detail from what is known
in literature one might complement the above list of related subjects as follows.

® The study of wavelets in function spaces. Wavelets, wavelet bases, and wavelet
frames, preferably investigated in spaces of type L,(R") and L,(R") with
1 <p< o0, have also been considered in diverse other types of function spaces,
including spaces of type B, and F, . We refer to the respective sections in
[22,14,7,24,37]. Our own approach, quarkonial decompositions in function
spaces, which started in [29,30] as an instrument to study entropy numbers, has
been formalised and modified in [32] in the context of wavelet analysis, now
suitable to handle also approximation numbers. As said, it is one of the main aims
of this paper to present this new possibility.

The plan of the paper is the following. In Section 2, we collect definitions and some
first assertions. Section 3 contains the main results. Proofs are shifted to Sections 4,
starting in 4.1 with a description of the wavelet frames according to [32] as far as
needed here. In Section 5, we add a few complements.

2. Some prerequisites
2.1. Basic notation

We use standard notation. Let N be the collection of all natural numbers and
No = NuU{0}. Let R" be euclidean n-space, where neN. Put R = R', whereas C is
the complex plane. As usual, Z is the collection of all integers. Furthermore, 7",
where ne N, denotes the lattice of all points m = (my, ...,m,)eR" with m;eZ. The
set Nj of all multi-indices consists of all points

B=(Bi,....B,) with B;eNg and |B] =" B;.
j=1
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We use the equivalence ~ in
ag~by or @(x)~y(x) (2.1)
always to mean that there are two positive numbers ¢; and ¢, such that
aar<bpy<crar or c1p(x)<yY(x)<cp(x)

for all admitted values of the discrete variable k or the continuous variable x, where
{ar}, {bx} are sequences of positive numbers and ¢, ¥ are positive functions. Given
two Banach spaces X and Y, we write X & Y if X < Y and the natural embedding of
X in Y is continuous.

Let S(R") be the Schwartz space of all complex-valued, rapidly decreasing,
infinitely differentiable functions on R". By S’(R") we denote its topological dual, the
spaces of tempered distributions on R".

Furthermore, L,(R") with 1 <p< oo is the standard complex Banach space with
respect to the Lebesgue measure u;, normed by

1

. P
AL @ = ([ 17w @)
where we prefer p; (dx) in place of dx.

2.2. Some function spaces

If f is a locally integrable (complex-valued) function in R” then

(M) (xX) =f(x+h) —f(x) where xeR", 0#£heR",

and, iteratively, A} = A} (AM ") if M — 1eN, are the usual differences. Recall that
for any seR,
n 62

I:fi>(id—A2f, where A=Y —
7 0x;

Jj=
is the usual Laplace operator in R”, maps S(R") onto itself and S'(R") onto
itself.

Definition 1. Let | <p< c0.

(i) Lets>0and let NeN with N >s. Then B)(R") is the collection of all /'€ L,(R")

such that
1

P
/1B, (R = LA 1Ly (R[] + </h A 1|AG fILy (R &jﬁ) (2.2)

[h<1

is finite.
(i1)) Let seR. Then

H)(R") = I,L,(R") (2.3)



6 H. Triebel | Journal of Approximation Theory 129 (2004) 1-27

and
H*(R") = H3(R"). (2.4)

Remark 1. Recall that
B;([RR") = B;q(R”) with ¢ =p

are special classical Besov spaces, normed by (2.2), whereas H;([RE") are well-known
Sobolev spaces normed by

I 1H, RO = LA Ly(RY]], - f € Hy(R")
with the distinguished Hilbert spaces H*(R") and the classical Sobolev spaces
k _ wk
H,(R") = W,(R"), keN, l<p<o
as subclasses. Of course, all spaces are considered in the framework of S'(R"). For

different values of N e N with N >s in (2.2) one gets equivalent norms in BIS,(R”). But

this is unimportant for our purpose and not indicated on the left-hand side of (2.2)
(one might think of the smallest admitted N). We do not distinguish between
equivalent norms in a given space. In the main bulk of this paper, we restrict
ourselves to the above spaces. The only exception is the final complementary section
5 where the more general spaces B, (R") and F, (R") will be mentioned. The theory

of these function spaces has been developed systematically in [26-28]. In particular,
the specific formulation in part (i) of the above definition is covered by [28, Theorem
2.6.1, p. 140, Corollary 1, p. 142]. Recall that

HY(R") = H(R") = B5(R"), s>0. (2.5)

2.3. Measures

We always assume that u is a positive Radon measure in R" with
I =suppu compact, O<pu(R")<oo, |I'|=0, (2.6)

where |I'| is the Lebesgue measure of I'. Let 1<p<oo. Then L,(I', u) is the usual
complex Banach space, normed by

Azl = ([ 1o <dx>)’l’ = ([1rarn <dy>)% ,

where we use likewise both notation. Since u is assumed to be Radon, S(R") or,
likewise, its restriction S(R")|I" to I' is dense in L,(I',pu). If feL,(I', u) then f, or
better the complex Radon measure fu, can be interpreted in the usual way as a
tempered distribution id, f,

(idy f) () = / Fo0u (), peSER?. (2.7)
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The linear identification operator id, maps L,(I", u) continuously in S'(R"). We refer
for details to [30, 9.2, pp. 122-124]. A ball in R” centred at xeR" and of radius r is
denoted by B(x,r).

Definition 2. Let u be a Radon measure in R” according to (2.6).

(1) Then u is called isotropic if there is a continuous strictly increasing function / on
the interval [0, 1] with #(0) =0, A(1) =1, and
w(B(y,r))~h(r), yel =supppu, 0<r<l. (2.8)
Then I is called a A-set.

(i1) The isotropic measure u according to part (i) is called strongly isotropic if there
is a natural number k such that

h(27*)<ih(27) for all jeNy. (2.9)
Then I' is called a strong h-set.

Remark 2. As for the use of ~ we refer to (2.1). By A(0) =0 we exclude
measures with atoms. Hence u is diffuse according to [1, Section 5.10, p. 61].
In [30, p. 277], we called a Radon measure u in the plane with (2.6), satisfying
the doubling condition, strongly diffuse if there is a number 1 with 0<i<]1,
such that

1(01) <3 u(Qo)

for any cube Qp centred at some point y,el” = supp u and of side-length r with
0<r<1, and any sub-cube Q; with Q; = Qy centred at some point y, € I" and of side-
length Jr. The extension of this definition from R? to R" is obvious. It is quite clear
that any strongly isotropic measure according to the above definition is in particular
strongly diffuse what may justify this notation. The assumption A(l) =1 is
convenient but immaterial. The almost classical example nowadays of strong /-
sets are d-sets with A(r) = r where 0 <d <n, hence

w(B(y,r)~r?, yel, 0<r<lL. (2.10)

Details and references may be found in [29, pp. 5-7]. Perturbed d-sets, so-called
(d, ¥)-sets where h(r) = r!¥(r), typically with ¥(r) = |log §|b for some heR, have
been introduced in [11] and considered in detail in [23,17]. Arbitrary A-sets have been
studied in [2-4]. It comes out that for a given function / with the above properties
there is a compact set I" and a Radon measure p with (2.8) if, and only if, there exists
an equivalent function 4*, h~h*, with

h*(27)<2%n*(277%)  for all jeNy and all keNy. (2.11)
One has in addition

Il'| =0, if, and only if, lim "h(r) = 0.
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Proposition 1. Let u be an isotropic measure according to Definition 2(i1) with the
generating function h. Then the following three assertions are equivalent to each other:

1. w is strongly isotropic,

2. > h@7)~h(27)  for all JeNy, (2.12)
j=J

3 STt~ 2) for all JeN,. (2.13)
j<J

Proof. Step 1: Assume that u is strongly isotropic according to (2.9). Then we have
for /e Ny,

h2= 7"y <2 'h(277), JeN,
and with J — lke Ny,
77 <27 N (27),  JeN.

Together with (2.11) and h~h* one gets (2.12) and (2.13).
Step 2: Assume that we have (2.12) and for some JeNy and LeN,

h(z—.}—])>%h(2_‘]) for Z = 0, ...,Ln
Then

m=
and L + 1<2c¢. Since & is monotone it follows that
h(2 7" F <L h(277)  for all JeN,
and hence (2.9).
Step 3: Assume that we have (2.13) and that for some LeN and J>L,
= 27y forI=0,..., L.
Then
Ltl, ~ iy
- )<Y R Emy<eh (2.

m=0

One obtains (2.9) for some ke N by the same arguments as above. [

2.4. Traces

Again let p be a Radon measure in R" according to (2.6) and let B)(R") be
the spaces introduced in Definition 1. Let 1<r<oco. We ask whether there is a
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constant ¢>0 such that

1
( / |<p<~/>|’u<dv>)’ <cllplB(®")]| for all peS(R"). (2.14)

If this is the case then one can extend (2.14) from S(R") to B,(R") by completion
using that S(R") is dense in B,(R"), [27, Theorem 2.3.3, p. 48]. Then any f € B,(R")
has a (uniquely determined) trace tr, f € L,(I', u) and

tre: BY(R") S L(T, 1)

is denoted as the (linear and continuous) trace operator. We studied in [30, Section
9], in detail traces of function spaces of the above type. We collect a few easy
consequences which will be of some service later on. Let Oj, be the cubes in R” with
sides parallel to the axes of coordinates, centred at 2/m and with side length 27!
where me 7" and jeNj. Let

1y = sup u(Qm), JjeNo,

meZ"

what in case of isotropic measures simply means u; ~h(277).

Proposition 2. Let u be a Radon measure in R" according to (2.6) and let

1 1
l<p<oo, —-+-5=1, s5>0.
p

p
If
try: By (R") & Ly(I', w) (2.15)
exists (as a linear and continuous map) then (necessary condition)
S 2 ST Q) < 0. (2.16)
_fE No meZ"

Conversely if
PV ) /
N o <o (2.17)
JjeNo

then tr, according to (2.15) exists (sufficient condition).

Proof. If r, exists according to (2.15) then #r, is also a bounded map from B, (R")
into Ly (I, u). Then (2.16) follows from [30, Theorem 9.9(ii), p. 131]. Conversely,
since p’ — 1 = %/, condition (2.17) coincides with [30, (9.47), p. 130], with » = p. This
proves (2.15). O

Remark 3. By
ST w0 <N w( Q) ~ it

meZ" meZ"
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it follows that the two conditions (2.16) and (2.17) are near to each other. They
coincide if p is isotropic. Of interest are only spaces B,(R") with s<1’—j because

otherwise the above conditions are automatically satisfied (recall that B)(R") with
s>;—7 is continuously embedded in C(R")).

Corollary 1. Let u be an isotropic Radon measure according to Definition 2(i) with the
generating function h. Let

1

1
l<p< oo, ;Jr—,:l, 1<r<p and s>0.

Then
try: By (R") & L(I', p)

exists if, and only if,

N 2 <, (2.18)
JjeNo

Proof. This assertion follows in the cases » = 1 and r = p from [30, Theorem 9.9(ii),
p. 131], and the above Remark 3, respectively. The rest is a matter of the
monotonicity of the spaces L,(I",u). O

2.5. The operators By and Weyl measures

We describe what is meant by the operator By mentioned in (1.5). Let s> 0 and let
H*(R") be the Sobolev spaces introduced in Definition 1(ii) and let u be an isotropic
Radon measure with the generating function / according to Definition 2(i) such that

> 27 p(27) < 0. (2.19)
JjeNy

Then we have by Corollary 1 and (2.5) that

try: H*(R") & Ly(I, ) (2.20)
(linear and continuous operator). Let id, be the identification operator according to
(2.7). By [30, 9.2, pp. 122-125], the operators tr, and id, are dual to each other,

), =id, and id, = tr, (2.21)
hence, identifying as usual L,(I", u) with its dual, one gets by (2.20) within the dual
pairing (S(R"), S'(R")), that

id, : Ly(I', p) & HP(R")
and, as a consequence,

id" = id,otr, : H*(R") & H*(R"). (2.22)
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The precise understanding of (1.5) is now given by

By = (—A +id) " eid". (2.23)
Using (2.22) and well-known mapping properties it follows that
B : H'(R") & H*(R") (2.24)

is a linear and bounded operator in the Hilbert space H*(R"). We equip H*(R") with
the scalar product

(1) = [ (A () (= + id) R () (2.25)

where again u; stands for the Lebesgue measure in R”, and where both f and g are
elements of H*(R"). Extending the reasoning in [30, 19.3, p. 257], and in [29, 28.6,
30.2, pp. 226, 234], to the above case it follows that:

(Bef )iy = [ ()0) - T ()

Hence, By is a linear operator in H*(R"), generated by the scalar product in L, (I, i),
considered as a bounded, non-negative, self-adjoint operator in H*(R"), and as a
consequence,

| VBSIH®)

| =l fILa(T )l f e HA(RY), (2.26)

Remark 4. In the present paper, we restrict our attention to operators By, where the
underlying measure u is isotropic. But this is not necessary. If u is a Radon measure
according to (2.6) with (2.20) then the above considerations remain valid. Criteria
(necessary and sufficient conditions) for the existence of the trace operator try
according to (2.20) in this general case may be found in [30, 9.3, 9.4, pp. 125-127].
Operators of type (2.23) have been considered several times, sometimes with the
Dirichlet Laplacian —A in bounded smooth domains in R” in place of —A + id in R”,
but always under some restrictions for s and p: Cases of preference are s = 1 (if in
addition n = 2, then one arrives at drums with fractal membranes), d-sets according
to (2.10) or (d, ¥)-sets mentioned after (2.10). We refer to [29, Chapter V], [30,
Chapter III], and [23]. In all cases considered, the above operator By is compact. Let
{0k }ren be the sequence of all positive eigenvalues of Bj, repeated according to
multiplicity and ordered so that

01=0,> >0

One of the main points in all these considerations is the determination of
equivalences of type (1.6) for these eigenvalues. Of peculiar interest is the case

oi~k7!, keN. (2.27)
This is the classical Weyl behaviour which occurs if s = 1, n =2 (fractal drums in
the plane) and s = 4 for general ne N. The latter case has been considered in [34]. But

the main point in the present paper (as far as the operator By is concerned) is not so
much that we now deal with general operators of type By but that our treatment is
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now based on approximation numbers, in sharp contrast to the above literature
which relies mainly on entropy numbers.

Definition 3. An isotropic Radon measure u according to (2.6) with the generating
function /4 and

> h27)<w (2.28)

JjeNo
is called a Weyl measure if
By=(-A+ id) 2oid"

according to (2.23), (2.24) is compact and if one has (2.27) for the positive
eigenvalues g; of B%.

Remark 5. Obviously, (2.28) is a special case of (2.18) or, better, (2.19). It comes out
that all the above operators By, in particular B% in the above definition, are compact.

In other words, the main (and only) point of the above definition is the distinguished
distribution (2.27) of the positive eigenvalues.

3. Main results
3.1. Traces

All notation have the above meaning. In particular, the spaces B‘[‘;(R”) have been

introduced in Definition 1 and we explained at the beginning of Section 2.4 what is
meant by the trace operator fr, and by the cubes Q;, in R".

Proposition 3. Let
1 1
l<p< oo, —+l7:17 s>0.

Let u be a Radon measure in R" with

I'=suppu compact, 0<p(R")<oo, |I'=0, (3.1)
and
IV /
Z R P),ujp-*l< o where ;= sup u(Qjm)- (3.2)
jeNy meZ"
Then tr,,,

try: By (R") & Ly(I', p) (3.3)
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is compact. Furthermore there is a constant c¢ (depending on p and s) such that for all
measures u with (3.1), (3.2),

1
o (s , r
||tr“|<c<z e p’ﬂf‘> . (3.4)

‘ENO

Remark 6. Compared with Proposition 2 we have now estimate (3.4) and, more
important, the assertion that fr, is compact. The proof is shifted to Section 4.2. It is
based on wavelet frames according to [30,32]. It is just one of the main aims of this
paper to use this new method to obtain assertions of the above type and estimates for
the approximation numbers of the compact operator tr,. Accepting Proposition 3,
the following assertion is an immediate consequence of Corollary 1.

Theorem 1. Let
1 1
l<p<oo, —+==1, 5>0
p p
and let u be an isotropic Radon measure 1 according to Definition 2(i) with the
generating function h. Then the following three assertions are equivalent to each other:

1. The trace operator try,
tr# : B;(Rn)ng<F7:u) (35)
exists,

2. tr, is compact,

VY ) .
3. 3 2Py <o (3.6)
JjeNy

Proof. By Corollary 1, assertions 1 and 3 are equivalent. The compactness follows
from Proposition 3. [

Remark 7. If §>2 then (3.2) and (3.6) are always satisfied and Proposition 3 and
Theorem 1 do not say very much. Hence the case of interest is sg;—;.

3.2. Approximation numbers

Let A and B be two Banach spaces and let L(A4, B) be the canonically normed
Banach space of all linear and bounded operators acting from A4 to B. Let
TeL(A,B). Then given any ke N, the kth approximation number a;(7T) of T is
defined by

ap(T) =inf{||T — L||: LeL(A,B), rank L<k},
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where rank L is the dimension of the range of L. This is a well-known notation
and might be found in many books. We refer, for example, to [10, 1.3.1], and
[8, II.2]. In particular, the degree of compactness of 7" can be measured how
rapid ax(T) tends to zero. Let T = tr, according to Proposition 3. We strengthen
(3.2) by

i (s—1y I (s=
Zz—/ﬂ(f ”)ll_f71~2 Jp'(: P>,u’} 1 JeN. (3.7)

=7
(According to the agreement in 2.1 the equivalence constants are independent of

JeNp). Again s<1’—§ are the cases of interest, otherwise (3.7) is always satisfied. To
avoid awkward notation let @, = qp if 1> 1 for the approximation numbers.

Proposition 4. Let

1
p p
Let p be a Radon measure in R" with (3.1) and (3.7). Let ar = ai(try) be the

approximation numbers of the compact operator tr, in (3.3). There are two positive
numbers ¢ and ¢ such that

l<p< oo, =1, s>0.

s 5
Aoni <2 (Sip),ug, JeNp. (3.8)

Remark 8. Sincep’' — 1 = % it follows by (3.2) or (3.7) that the numbers on the right-

hand side of (3.8) are tending to zero if J tends to infinity. We shift the proof of this
proposition to 4.3. Otherwise (3.8) is a rather crude estimate. It u is isotropic
according to Definition 2 with the generating function % then one gets much better
assertions. Let H be the inverse function of /4, hence

h(t) =t<t=H(r), 0<r<l, 0<r<l. (3.9)

Theorem 2. Let

1

1
l<p<oo, —+-5=1, 0<s<£
p p

Let p be a strongly isotropic Radon measure p according to Definition 2(ii) with the
generating function h and the inverse function H, satisfying

i (g1t - iy I
S 2y Py e, (3.10)

j=J

Let ai = ay(tr,) be the approximation numbers of the compact operator tr, according
to (3.5). Then

1 o
a~k PH(k™")" P, keN. (3.11)
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Remark 9 (Example). This is a rather satisfactory assertion. The proof is shifted to
4.4. Now one can check diverse admitted functions /4, maybe taken from the lists in
[3.4]. This will not be done here. We restrict ourselves to the almost classical example
of a compact d-set I' with 0<d <n,

1
h(t) =1 and H(t)=1d, 0<t<I.
Then we have (2.6) and u = Hd|F (the restriction of the Hausdorff measure H“ to I')
is strongly isotropic. If
1 n—d

1
1<p<OO, —+—/:17
p P P

n
<5<,

then (3.10) is satisfied (recall that p’ — 1 = %) and we obtain
1 1. .n 1. n—d
ac~k Pk 4 =k d ) ke

We remark that one has the same behaviour for the entropy numbers ¢, of the trace
operator tr, in (3.5). This follows from [29, 20.6, 20.2, pp. 166/159].

3.3. Fractal elliptic operators

We wish to apply the Theorems 1 and 2 with p = 2 to the operators By introduced
in Section 2.5. Recall that H*(R") = Bj(R") with s>0 are the Sobolev spaces
according to (2.4) in Definition 1(ii) and (2.5). Let i be an isotropic Radon measure
according to Definition 2(i) with the generating function /4. By Theorem 1, the trace
operator try,

try H¥(R") & Ly(T, )
exists, and is compact, if, and only, if,

> 22T < .

JjeNo

In particular, the constructions described in Section 2.5 concerning the operator B
can be applied and one gets the following assertion.

Theorem 3. Let u be a strongly isotropic Radon measure according to Definition 2(ii)
with the generating function h and its inverse function H given by (3.9). Let 0 <s<% and

S A0 BRI~ 22T TeN,. (3.12)
i=7

Then
By = (id — A) *oid" (3.13)

according to Section 2.5 is a compact, non-negative self-adjoint operator in H*(R"). Let
{0k}ien be the sequence of all positive eigenvalues of By, repeated according
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to multiplicity and ordered so that

01=20,=2->0, 0,—-0 if k- 0. (3.14)
Then

o~k TH(KH) ™ keN. (3.15)

Remark 10 (Example). The proof is shifted to Section 4.5. After the explanations
given in Section 2.5 it remains to prove the distribution (3.15) of the eigenvalues g, .
In case of a compact d-set I' with 0 <d <n we obtain by the same arguments as in
Remark 9,

_2s—n+d
or~k— a4 | keN

for the eigenvalues ¢, of B, given by (3.13) with n — d <2s<n. We obtained this
distribution of the eigenvalues in [29, Theorem 28.6, p. 226], in a slightly different but
nearby context.

We introduced in Section 2.5, Definition 3, Weyl measures.

Corollary 2. Any strongly isotropic Radon measure u in R" according to Definition
2(ii) is a Weyl measure.

Proof. We apply Theorem 3 with s = 4. Since yu is strongly isotropic it follows by

(2.12) in Proposition 1 that (3.12) with n = 2s is satisfied. Hence g, ~k~! where ke N
and u is a Weyl measure. [J

Remark 11. As mentioned in Remark 2, any strongly isotropic measure is a
strongly diffuse Radon measure. We proved in [30, Theorem 19.17, p. 280], that
any finite, strongly diffuse, compactly supported Radon measure in the plane R?
is a Weyl measure. The somewhat complicated proof is mainly based on entropy
numbers. But there is hardly any doubt (although not done in detail so far) that
this proof can be extended to neN. Then the above corollary would be a special
case of such an assertion. But here it is a simple by-product of Theorem 3. The first
step to deal with Weyl measures in R" had been done in [34] based on entropy
numbers. Using the above Proposition 1 it comes out that Theorem 1 in [34] is a
special case of the above Corollary 2. But both techniques, based on entropy
numbers or approximation numbers, respectively, have their advantages and
disadvantages (and we were not aware of the above simple Proposition 1 when
[34] was written).

4. Proofs

It remains to prove Propositions 3 and 4, Theorems 2 and 3. But first we describe
wavelet frames which are our basic tool in what follows. As mentioned in the
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Introduction it is one of the main aims of this paper to present this method as an
effective instrument to estimate approximation numbers.

4.1. Wavelet frames

We developed the theory of quarkonial (or subatomic) decompositions in function
spaces of type B, and F; with seR, 0<p< o0 (p< o in the F-case), 0<g< o0, in
[29, Section 14], and in [30, Sections 2 and 3], mainly as an instrument to estimate
entropy numbers of compact operators between these spaces in R”, in domains, on
manifolds and on fractals. We returned to this subject in [32] and used it in
connection with a global, local and pointwise regularity theory for distributions.
We follow here this paper in a slightly modified way restricting ourselves to the
special case

B,(R") with I<p<oo, s>0,

according to Definition 1(i).
Let » be a non-negative C* function in R" with

supprc{y = (1, ... ya) €R": [y| <2V, y;>0} (4.1)
for some fixed NeN and

Z #(x —m)=1 where xeR".

meZ"

Let
W(x) = (2 Vx)u(x)=0 if xeR" and peNg,

where xf = x/f‘ ~~-x5”. Let
weS(R"), suppwc(—n,n)", olx)=1Iif |x|<2,
[BIN
o’ (x :Wx o(x), where xeR" and peNj
and
Q)= > (@) (m)e™, xeR",
mez"

where |f| =, + -+, and = S,!---f,!. As usual, » and Vv refer to the Fourier
transform and its inverse, respectively. Let ¢, S(R"),

po(x) =1 if [x|<1, @g(x) =0 if |x|>5,
and ¢(x) = ¢y(x) — ¢y(2x). Then
{Qﬁ(x—m) if j=0, meZ",

P () = A
'/1 ¢ﬁ4(2’x—m) if jeN, meZzZ"
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are analytic wavelets where the father wavelets @ﬁ- and the mother wavelets @ﬁ,, are
given by their inverse Fourier transforms

(@5)"(8) = 2o(D2'(D),  (Ph)7 (&) = ()R (8),
with £eR”". For the sequence
Z:{i eC:jeNg, meZ", feNg},

s>0, I<p<oo and ¢=0 we put

1
1Blp+j )
|/“|/ ||g,s - (Z 20 pHe pM/m|p> (42)

Bj.m
where },., always means the summation over BeNj, jeNg, meZ". For
SeL,(R"),

M (f) = 2" S x)®h, (x)dx, jeNy, meZ", BeN; (4.3)

‘jm jm
are distinguished wavelet coefficients. We formulate now a special case of Theorem 1
in [32] in a slightly modified version. We put
W (x) =% (2Px—m), Pe NG, jeNg, meZ".

‘jm

Let 1<p<oo, 5>0, and ¢>0. Then f'e L,(R") is an element of B)(R") if, and only
if, it can be represented as

f=>" i, (4.4)

pj,m
with [|4]/,||, < 0. Furthermore,
1718, (RY)[[ ~inf[[2]Z]], 5 (4.5)

where the infimum is taken over all admissible representations (4.4). In addition, any
/€B,(R") can be optimally represented by

£=" A (f)h, (4.6)
pj.m
with
118, (RO~ A pl - (4.7)

The convergence in (4.4), (4.6) is absolute in L,(R") and unconditional in B} (R").
Furthermore, 9 >0 can be prescribed where the equivalence constants in (4.5), (4.7)
may depend on s, ¢, p. We refer for further details to [29, Section 14; 30, Sections 2
and 3], and, in particular, to [32]. Of special interest for us is the wavelet
representation (4.6) with (4.3), (4.7).
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4.2. Proof of Proposition 3

Step 1: Let f € B, (R") be given by (4.6), (4.7). For any fixed feNj we have

w o 1 5
DD AL < ey f(Z i <f>|>
j=0 meZz" j=0 meZ"

N 1
<Z 7 —jip'( Y_I_"u >p <Z 2](Y— | | )
jm

where c¢ is independent of  and u. We choose ¢>0. Then it follows by (4.2), (4.7)
and % =p’ — 1 that

1
. - *'/( -4 — v s n
||lrﬂf|LP(F7:u)|<c<Z 2 s p)'u; l) ||f|Bp(R )H’

Jj=0

where ¢ is independent of u. This proves (3.4).
Step 2: We prove that tr, is compact. Let BeN, JeN, and let trfJ be given by

L= Y D A (4.8)

BI<B j<J meZ"

where again f € B, (R") is given by (4.6), (4.7) and where the sum Zf; <z 1s restricted
to those meZ" such that the cubes Q;,, have a non-empty intersection with I'. For
given >0 and suitably chosen ¢ >0 it follows by the above arguments for f € B;( R™)
having norm of at most 1 that

[|(try — trg V1L (T, )
1
c o I , V4
Z 270l 4+ ¢ Z 9-blp| <Z y (s ”)ﬂf_l> ’ (4.9)
|Bl=B IBI<B j=J

where ¢ is independent of f. By (3.2) we find for any ¢>0 given sufficiently large
numbers B and J such that

|27y — trf’J||<£.

Since trﬁJ are operators of finite rank it follows that fr, is compact.
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4.3. Proof of Proposition 4

By (3.7) we have (3.2). Hence by Proposition 3 the operator tr, is compact. We
refine (4.8) by

r

=33 3 (. JeN, (4.10)

BI<J j<T-If| meZ"

where again f eB;;(R”) is given by (4.6), (4.7) and the last sum has the same meaning
as the last sum in (4.8). Since u is a measure in R" we have

pig <2V Ky where K<J. (4.11)

Let b>0 be sufficiently large. By (3.7) with p’ — 1 :%’ and (4.11) we obtain for
feB;(R”) having norm of at most 1 in analogy to (4.9) that

(11— tr)f |Lp (I, )|
1

oo 2\
<27 4 ¢ Z >-blf| Z oI (S—]‘,)’ujp
IBI<J J=J—|pl
1
—bJ —blBlA— =1 5
<2 4¢ ) 27 i
1BI<J
1 1 gl N
< gl Y o G
1Bl<J
J(s=2 1
<27 (4.12)

for sufficiently large »>0. In the last estimate we used (4.11) with K = 0. For the
rank of tri we have the somewhat crude estimate

rank (1) <c¢ Z 2V=IR) < 2
1BI<J

This proves (3.8).
4.4. Proof of Theorem 2

Step 1: First, we prove that there is a number ¢>0 such that

1 _n
ar(tr,) <ck PH(k™")"r, keN. (4.13)
Again we rely on the wavelet expansion (4.6), (4.7). For fixed feNj we put

lrﬁf: Z Z ;‘j['jn(f)nj/'fn (414)

jeNg mez"
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and
r

b =N W) (4.15)

i<J mez"

where the second sum in (4.15) has the same meaning as the last sum in (4.8). By the
same reasoning as in (4.10), (4.12) but now for fixed  we have forfeB;(R”) with

norm of at most 1,

n_ 1
I(ert, = el LT, )l < 22"~ 2y, (4.16)

where b>0 is at our disposal and ¢>0 is independent of feNj and J N (but may
depend on b). We used (3.10) as the specification of (3.7) with u;~h(27). Since p is
strongly isotropic it follows by Proposition 1 that

rank( tr[” ZhZ’ N
jsJ

We obtain by (4.16) that there are two positive numbers ¢ and ¢’ such that for all
peNj and J e N,
n_ 1
A gr-ry1 (1) <2727 R o, (4.17)

Recall that >0 is at our disposal and that ¢ and ¢’ may depend on 5. By (2.11)
and h~h* we have h(277~1) ~h(277) where jeNy. Hence for ke N there are numbers
Ji €N such that

W2 )~k with Ji<h<-<I<- o0 (4.18)

if k— oo. Inserted in (4.17) one obtains
ar(irh) <c2” DIBl ) g~ P keN. (4.19)

Let ¢>0. For given ke N we apply (4.19) to ke N with kg~27%Flk (this means 1 if
the latter number is between 0 and 1). Then it follows from the additivity property of
approximation numbers and from (4.19) that

ac(try) < Z a, (lrﬁ)

BeNg
€ n 1
</ Z 2=bIBl oty ks (=) 1
ﬁEN”
< 2" 1’ (4.20)

We used s<§ and the monotonicity of the numbers J; in (4.18). Now, (4.13) is a
consequence of (4.20) and (4.18).
Step 2: We prove that for two suitable positive numbers ¢ and ¢/,

i n 1
A yrny 1 (1) 227 PRI, jeNy. (4.21)
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By (4.18) this is equivalent to the converse of (4.13) and completes the proof of
(3.11). We use the same type of arguments as in [29, pp. 219-220], appropriately
modified. Let JeN and ¢>0 be suitably chosen numbers such that there are lattice
points

Yle2 7", 1=1,..,M; where M;~h(27)"' (4.22)
with

dist(y, ) <c27 and disjoint balls B(y/!, c27/*1). (4.23)
Here je Ny and the (equivalence) constants in (4.22) and (4.23) are independent of ;.
With x as in (4.1) we put for je Ny,

M;

5= 27 Pu@(x =), ¢reC, xer". (4.24)
=1

Then we obtain by the localisation property according to [10, 2.3.2, pp. 35-36],

M; P
LA51B, (R~ (Z |le|p> (4.25)

=1

and (all constants are suitably chosen)

AL, )l ~27 PRy <Z cﬂl”> (4.26)
All equivalence constants are independent of jeNjy. Hence,

AL, )l ~27 P2 ’) if [|£1B,(R")[|~1. (4.27)
Now let 7 be a linear operator,

T:B,(R")SLy(I',u) with rank T<M; — 1. (4.28)

Then one finds a function f; according to (4.24) with norm 1 in B(R") and T}f; = 0.
Hence, by (4.27),

i1t 1
a (1r,) = inf||tr, — T|| =27 P h 7w, jeN,, (4.29)

where the infimum is taken over all 7" with (4.28). Here ¢ is some positive constant
which is independent of je Ny. Now (4.21) follows from (4.29) and (4.22).

4.5. Proof of Theorem 3

Step 1: By the explanations given in Section 2.5,
= (id — A)"oid" where id" = idotr,, (4.30)

is a bounded, non-negative self-adjoint operator in H*(R") equipped with the scalar
product (2.25). If p = 2 then (3.12) coincides with (3.10). Then it follows by Theorem
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2 that By is compact. Let g, be the positive eigenvalues of B, ordered according to
(3.14). It remains to prove (3.15).
Step 2: We prove that there is a number ¢>0 such that

o <ck 'H(k™)*™".  keN. (4.31)

By (2.21) the identification operator id, is the dual of the trace operator tr,. By the
usual assertion for dual operators, [8, Proposition II, 2.5, p. 55], and Theorem 2 we
have

n
§—

aid,) = a(tr,) ~kTH(Y 2, keN. (4.32)

By (4.30) and the multiplication property for approximation numbers, [8,
Proposition II, 2.2, p. 53], one obtains

ax(By) ~ ay (id") <ay (tr, ) ay (id,) ~ k™ H (k™) " (4.33)
Recall that ai(By) = 94, [8, Theorem II, 5.10, p. 91]. Then (4.31) follows from (4.33)
and

HQ27)~HQ27), jeN,.

1
Step 3: Recall ax(v/Bs) = 7. Hence, to obtain the converse of (4.31) it is sufficient
to prove that

1 . n
ar(\/Bs)=ck 2H(k™')72, keN, (4.34)
for some ¢>0. We use the same arguments as in 4.4, Step 2, now with p = 2. Hence,
based on (4.22), (4.23), we put
wooo
fi(x) = Z 27Dy (D (x — M), ¢peC, xeR".
=1

By (4.25)—(4.27), (2.5), and (2.26) we have
VB (R

By the same arguments as in connection with (4.28), (4.29) we obtain for
M;~h(27)"" that

n

’Nz—m—g)h(zﬂ)i if [|f|H(R)[[~1.

A 1
ay, (v/By) =27 Dh(27)2, jeN. (4.35)
This is the counterpart of (4.21). Hence, as there, (4.34) is a consequence of (4.35).

5. Complements

We used wavelet frames as the main tool to estimate approximation numbers in
some special function spaces. Although not done in detail so far this technique can
be used also in other situations. But it is not our aim to comment on these
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possibilities. Just on the contrary. We add two corollaries which rely on the above
assertions combined with some general results available in literature.

5.1. Interpolation

We assume that the reader of this subsection is familiar with the theory of the

function spaces B, (R") and F, (R"). Recall that
FH(R") = H)(R"), 1<p<oo, seR,

are the Sobolev spaces according to (2.3). As usual nowadays A[S]q(R”) stands either
for B (R") or F, (R") (indicating that the assertion in question is equally valid for
B-spaces and F-spaces).

Corollary 3. Let

1
l<p<ow, —+-5=1, 0<s0<ﬁ, 0<g< oo.
P p

Let p be a strongly isotropic Radon measure p according to Definition 2(ii) with the
generating function h and its inverse function H, satisfying

=i (50=5) 1 rn—jnp' =1 A= (s0=5) 1 1\ p 1
d 2 PhQIY " N2 PR JeN. (5.1)

=7
Let sy <s<[ﬂ). Then

try: Ay, (R") S Ly (I, 1) (5.2)
is compact and

a(ir) ~ kK PHEY S, ke, (5.3)

where ay(tr,) are the respective approximation numbers.

Proof. Since

B

'p,min(p.q) (Rn) s F;,q(Rn) e B;),max(p,q) (Rn)

it is sufficient to deal with the B-spaces. Furthermore we have (5.1) with s, in place of
so where 5o <s1 < g We wish to apply Theorem 2, or better its proof in 4.4. Recall the

real interpolation formula
(B, (R"), B, (R"))g, = By, (R")
where 0<g< o0,
S0 <51 :7—), 0<0<1, s=(1-=0)s)+0s

[26,27]. We apply the interpolation property to the universal operators trﬁ and trﬁ’J
in (4.14) and (4.15) (which are independent of p and s). Then one obtains the
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counterparts of (4.16), (4.17), and hence (4.13) now for

tr s By (R") > Ly(T, ), so<s<§.

As for the converse one can use the same arguments as in Step 2 in 4.4. The main
point is the application of the localisation property according to [10, 2.3.2, pp. 35—
36]. But this works for all spaces 4, (R"). [

5.2. Entropy numbers

We describe a second application of the above results: estimates of entropy
numbers by means of approximation numbers. Let 4 and B be quasi-Banach spaces
and let TeL(A4, B); let Uy be the unit ball in A. Then for ke N, the kth entropy
number e, (7") of T is defined as the infimum of all £>0 such that T(Uy) can be
covered by 2¢-! balls of radius ¢ in B. Otherwise we assume that the reader of this
subsection is familiar with entropy numbers and their use.

Corollary 4. Let p be a strongly isotropic Radon measure u according to Definition
2(ii) with the generating function h and its inverse function H.

(1) Let the hypotheses of Theorem 2 be satisfied and let ex(tr,) be the entropy
numbers of tr, according to (3.5). Then there is a positive number c such that

n

1 on
ex(tr,)<ck PH(k™')"», keN. (5.4)

(i) Let the hypotheses of Corollary 3 be satisfied. Then the entropy numbers ey (tr,,)
of try now given by (5.2) can be estimated according to (5.4).
(iii) Let the hypotheses of Theorem 3 be satisfied. Let

try s H¥(R") & Ly(T, ).
Then

n

I
ex(try) ~ap(try) ~k 2H(k™")2, keN. (5.5)

Proof. Step 1: By (3.11) we have ay-1 ~ay, where jeNj. Then it follows by [10,
Theorem 1.3.3, p. 15], that

ex(try) <car(try), keN. (5.6)

Hence (i), and similarly (ii), follow from (3.11) and (5.3), respectively.
Step 2: The last equivalence in (5.5) is covered by (3.11). We have also (5.6). As for
the converse estimate we remark that

ex(id,) = ex(try), keN.
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This follows in analogy to (4.32) from the duality assertion for entropy numbers in
Hilbert spaces, [10, Theorem 1.3.1, p. 9]. Similarly as in (4.33) one obtains now by
the multiplication property for entropy numbers and by Carl’s inequality, [10,
Corollary 1.3.4, p. 20],

K™V H (K™Y ~ 0y < creai(By) ~ exyc (id")
< el (tr)<ck "H(k)» "

resulting in (5.5). O
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